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Abstract

I link 6-hour air pollution exposure to the total number of car accidents in the city of Santiago

by exploiting time-series variation from 2013 to 2016. In order to identify the causal effect of CO

exposure, I use plausible exogenous variation in atmospheric stability to instrument CO exposure.

I found a nonlinear relationship between CO exposure and the total number of car accidents. This

result is driven by nonfatal accidents. Indeed, I do not find any impact on fatal accidents. In

addition, the results hold under a battery of robustness checks. Although Santiago’s CO level is

far below the international criteria of a hazardous level, I argue that reducing the average level of

pollution leads to a sizable increase in social welfare due to a reduction in the number of car accidents.
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1 Introduction

Over 1.2 million people worldwide die each year on roads, with millions more sustaining severe injuries

and living with long-term adverse health consequences. Injuries produced by car accidents are estimated

to be the ninth leading cause of death across all age group worldwide (WHO, 2015). Contrary to popular

belief, the costs of car accidents are not only related to fatal injuries. The Insurance Research Council

estimated that almost three-quarters of the costs of an accident are paid by actors that are not directly

involved in the accidents, such as insurance companies, municipalities, police, and fire departments.

Taking into consideration that car accidents represent between 1-2% of the GDP in middle-income

countries (Jacobs et al., 2000), they impose an extremely high cost on society. Also, car accidents are

reported to be a significant source of traffic congestion, causing considerable costs due to delays. Garrido

(2012) estimates that the average cost of congestion in a small city as Antofagasta is higher than USD

1 million during a typical working day. Therefore, car accidents may represent a negative externality for

the rest of society.

Given its relevance, previous work has focused on understanding the causes of car accidents. The

main causes are divided in three: environmental, mechanical, and driver-related accidents (WHO, 2015).

This paper seeks to provide new evidence on car accidents estimating the impact of contemporaneous

exposure to air pollution on the total number of car accidents. Following an instrumental variable

strategy, I estimate the exogenous changes in short run pollution exposure on the total number of car

accidents. To do so, I constructed 6-hour window measures of pollution and car accidents for Santiago

between 2013 and 2017.1 Using this time-series database, I provide strong evidence that an exogenous

increase in air pollution has a nonlinear positive effect on the total number of car accidents, increasing at

a decreasing rate as exposure increases. The estimated economic benefit of decreasing the average level

of CO in a 20% surpasses USD 1 million per year.

Using an OLS approach to estimate the effect of air pollution exposure on car accidents raises endo-

geneity concerns. Moreover, the pollution measures come from 10 stations distributed within the city so

that a näıve OLS estimation may be severely biased downward. Instead, to identify the causal effect of

air pollution on car accidents, I exploit the meteorological phenomenon of thermal inversions (measured

as the degree of atmospheric stability) to instrument air pollution exposure. An inversion occurs when a

mass of hot air gets caught above a mass of cold air, trapping pollutants in the troposphere. Although

Santiago does not have a station that measure air temperature at different heights, I account for this

using the difference in temperature of two stations that are located at different altitude.

Why would air pollution exposure affect car accidents? The medical, psychological, and biological

literature have documented three potential ways relating air pollution and car accidents. First, air

pollution exposure leads to physical symptoms, such as headaches, dizziness, and visual changes, that

could increase the total number of car accidents. Second, it has been shown that air pollution affects

exposed individual’s psychologically, leading to mood changes. Levesque et al. (2011) show that rats

exposed to higher levels of air pollution suffer from neuroinflammation, leading them to behave more

aggressively. Aggresive behavior have been documented to increase car accidents. For example, Dingus

et al. (2006) and Iversen and Rundmo (2002) show that aggressive driving substantially increases the

probability of having a car accident. Finally, air pollution may impact the number of car accidents due to

1This understanding of car accidents considers all car crashes and pedestrians run over.
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impaired reasoning. Consequently, an increase in air pollution may lead to an increase in car accidents.

The background on the relationship between air pollution and car accidents is discussed in more detail

in Section 2.

In order to show that the estimated effect is not spurious, I present several sensitivity checks that

do not alter my conclusions. For example, the use of a nonlinear Poisson Count model to estimate the

effect of air pollution provides qualitatively similar point estimates to my baseline IV results. Also, a

distributed lag model finds no evidence for delayed impacts of air pollution. In addition, the results

using aggregated level of pollution as treatment, instead of one pollutant, remain virtually unaltered,

albeit the results are less robust. Finally, to explore if the results are driven by unobservable variables

that covary with thermal inversions, I replace the treatment variable with pollution data from monitors

across Chile. I do not find evidence that these unobserved variations are driving the results.

This paper contributes to the vast literature that studies the determinants of car accidents. Previous

studies have shown that drunk driving is one of the major causes of car accidents, accounting for 19%

to 26% of fatal accidents (WHO, 2015). Cotti and Walker (2010) find that the U.S. casino expansion, a

place that is often associated with alcohol, leads to an increase in fatal car accidents induced by alcohol.

Another well-known cause of road accidents is distracted driving. The use of mobile phones while driving

is a major source of distraction and increases the risk of having an accident.2,3 An overview elaborated

by WHO (2015) suggests that drivers using their mobile phone when driving are four times more likely

to be involved in an accident than those who not use them. Moreover, Faccio and McConnell (2017)

found that the introduction of the virtual reality game Pokémon GO significantly increased the number

of car accidents due to distracted driving, specially in the proximity of PokéStops.4 My work contributes

to this literature providing the first estimates regarding the impact of air pollution on car accidents in a

developing country. To the best of my knowledge, only one work has documented the adverse effect of air

pollution on car accidents. Specifically, Sager (2016) found an increase of 0.3 accidents per day for each

additional 1 µg/m3 in the daily concentration of NO2 in the United Kingdom. Sager’s estimated effect

of air pollution is larger than the results of this paper. However, there is an important concern about

the external validity of Sager’s results to the developing context. If the dose-response function is concave

in exposure level (as will be discussed in Section 2), marginal changes in pollution are less damaging at

higher levels of air pollution. As a result, using Sager’s estimates in a developing country would cause

policymaker to overestimate the effect of air pollution on car accidents grossly.

Additionally, this paper analyzes a second order effect of the detrimental impact of air pollution on

human health. Several articles have documented a negative impact of air pollution on health outcomes

(Arceo et al., 2016; Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and Walker, 2011;

Knittel et al., 2016; Schlenker and Walker, 2015). This impact on health manifests as distracted and

aggressive driving and may lead to an increase in the total number of car accidents causing several types

of injuries to drivers and pedestrians. Both symptoms have documented a large impact on nonfatal

accidents. Therefore, one may expect a large impact of air pollution over nonfatal accidents, which are

2WHO (2015) shows that 69% of drivers in the U.S. had used their mobile phone while driving within the previous 30

days. In Europe, that percentage is ranged between 21% to 59%. This percentage is difficult to estimate in developing

countries since data on mobile phone use is not routinely collected when accidents occur.
3WHO (2015) enumerate three ways of how distraction caused by using a mobile can affect driving performance. First,

they affect the reaction time (especially braking time) of a driver. Second, it affects the ability to keep the vehicle in the

correct line. Finally, the change in the driving patterns making drivers more unpredictable for other drivers.
4PokéStops are a well-identified location where Pokémon GO users can be found.
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more affected due to distracted and aggressive driving (Young et al., 2007). As expected, I only find

evidence that air pollution increases nonfatal accidents. Indeed, I find no effect on fatal accidents.

This paper also contributes to the emerging literature that relates air pollution to workers’ productiv-

ity. In Chile, 7,5% of households have a head of household working as professional drivers (INE, 2014).5

Although I cannot separate the effect over taxi and public transportation drivers, in my sample 33% of

the accidents involve, at least, one professional driver.6 This increase in the number of accidents due to

exogenous changes in air pollution can be interpreted as a fall in productivity in the professional driver’s

sector. Hence, this paper relates to several economic papers that find a reduction in productivity due to

an exogenous increase in air pollution (Chang et al., 2016a,b; Hanna and Oliva, 2015; Zivin and Neidell,

2012).

Furthermore, this work contributes to the regulatory debate about ambient quality standards. As

well as Chang et al. (2016b); Currie et al. (2009); Schlenker and Walker (2015) and Zivin and Neidell

(2012) show, my findings suggest that within-day variation in air pollution has a significant effect on car

accidents bellow current EPA’s mandates. I believe that this is particularly important because, in 2011,

the EPA decided against lowering the existing CO standard due to insufficient evidence that low levels

adversely affect human health. The maximum hourly CO concentration in the data is 20.6 ppm, which

is below the ambient quality standard of 35ppm for any 1-hour reading. In other words, air quality

levels were always within the limit. Yet, I find that fluctuations in pollution levels still have sizable

consequences in car accidents.

The rest of the paper is organized as follows. Section 2 presents the medical and epidemiological

background of air pollution and car accidents. Section 3 describes data. Section 4 presents the empirical

strategy and the baseline results. Section 5 presents the instrumental variables results. Section 6 presents

disaggregated effect and robustness checks. Finally, Section 7 concludes.

2 Air Pollution, Human Health and Car Accidents

This study focuses on carbon monoxide (CO) exposure. CO is a colorless, odorless gas that has

been documented to have detrimental effects on humans. This paper documents the causal relationship

between CO exposure and the total number of car accidents. I remain agnostic on the underlying

mechanisms of this link. However, research in the fields of medicine, psychology, and biology have

documented three potential ways as to how CO exposure can affect car accidents.

The first of these ways, and perhaps most straightforward link between CO exposure and car accidents,

indicates that exposure to CO can manifest as medical symptoms such as headaches, dizziness, and visual

changes (Ernst and Zibrak, 1998; Kampa and Castanas, 2008; Piantadosi, 2002), leading to discomforting

driving. Petridou and Moustaki (2000) found a negative correlation between driver’s comfort and the

probability of being involved in a car accident, especially in nonfatal accidents.

A second documented way that explain this effect, is that CO exposure may lead to psychological

changes that can manifest as aggressive behavior. Exposure to common air pollutants, including CO,

leads to oxidative stress and the inflammation of the nerve tissues in the body and brain. This neu-

5Professional drivers count for taxi, ambulance, public transportation, and trucks drivers.
6I estimate this percentage since CONASET database keeps record of the license type. I consider professional drivers

every driver using a license type A, which is the license type used to drive an ambulance, a taxi and public vehicles.
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roinflammation is linked to aggressive behavior in humans (Levesque et al., 2011; Rammal et al., 2008;

van Berlo et al., 2010). Also, CO poisoning leads to an increase in brain blood flow (WHO and Raub,

1999), effect that is related to adverse behavioral changes, such as aggressive reactions (Benignus et

al., 1992). Dingus et al. (2006) and Iversen and Rundmo (2002) show that aggressive driving increases

the probability of having a car accident. Consequently, one could expect that CO exposure leads to an

increase in car accidents due to aggressive driving.

Finally, CO exposure may lead to a negative impact on the driver’s ability to think correctly, increasing

the number of car accidents. This is justified through the formation of carboxyhemoglobin, as CO binds

to hemoglobin, reducing the cardiovascular system’s capacity to carry oxygen. Amitai et al. (1998) ran a

lab control experiment which randomly assigned different level of exposure of CO to 92 students from the

Hebrew University of Jerusalem.7 They tested the students for several neuro-psychological dimensions.

The main results indicated that exposed students performed worse, even at low exposure, in learning,

attention, concentration, and visual processing tests. These results relate to the findings of Ebenstein

et al. (2016) and Lavy et al. (2014), whose papers documented that students exposed to higher levels of

pollution had worse results in Israel’s standardized tests.

Additionally, several articles have shown a nonlinear effect on the dose-response function as the

exposure levels increase (Ezzati and Kammen, 2001; Pope et al., 2009, 2011). Ezzati and Kammen

(2001) find that, as CO exposure increases, households exposed to low and medium levels present an

increase in the number of weeks its members suffer from respiratory illness. However, they find that the

marginal effect of CO exposure increases at a decreasing rate. Also, WHO and Raub (1999) show that

marginal increases in exposure, at low levels, lead to changes in blood flow and impaired visibility. On the

contrary, dose-response in extreme exposure levels seems to increase at increasing rates. The symptoms

of severe CO exposure go from nausea and respiratory arrest to death (Goldstein, 2008). Extreme CO

concentrations are not a serious issue to this study since, as I will discuss later, Santiago’s CO level is

low. If the nonlinear dose-response at low CO levels translates to the total number of car accidents, one

may expect a nonlinear impact of CO exposure on car accidents.

Natural and anthropogenic sources are the principal emitters of CO. About half of the carbon monox-

ide is created on the Earth’s surface, whereas the rest is produced in the atmosphere (WHO and Raub,

1999). In urban contexts, the percentage of CO produced by anthropogenic sources increases. Gallego

et al. (2013) shows that mobile sources and light-duty vehicles are responsible for 97% of CO in Mexico

City and 94% in Santiago.

In an effort to provide public health protection, the Environmental Protection Agency (EPA) sets

an ambient quality standard for pollutants considered harmful to public health and environment. For

CO, EPA sets two criteria: a one hour maximum level of 35 ppm per hour and an eight-hour maximum

average of 9 ppm. These criteria were not exceeded during the sample used.8 Therefore, EPA’s standards

suggest that the CO exposure of the average inhabitant of Santiago is not high.

7The total sample was divided in two: 45 exposed individuals and 47 controls. None of the students in the sample knew

the group in which they belong.
8A typical concern is the pollution proxy used. Since I use a 6 hour mean over the median of the SINCA’s monitors, CO

peaks can be attenuated by low levels of CO in other monitors or if, after a peak of CO level, the CO level of the following

hours decreases rapidly. The maximum one-hour observed CO level in Santiago is 20.6 ppm. This level, although higher

than the maximum level of the proxy used (i.e., 3.63 ppm), is far below EPA’s mandate. So, although the monitor’s level

can differ from Santiago’s average level used, both levels are below EPA’s threshold.
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3 Data

I compiled data from air pollution measures, car accidents, traffic and weather conditions for Santiago

from the years 2013-2016. Each data source is described in detail below.

3.1 Car Accidents

I have a panel of traffic accidents with their causes (59 types as listed in Appendix Table A.1 and A.2)

from the years 2013 to 2016 for 43 municipalities of the Metropolitan Region.9 This information was

provided by the SIAT Office of Carabineros de Chile. This database includes information regarding the

date (day and hour), the number of people injured and death, gender and age of the driver, and some

information about location (municipality and geographic region) as well as climatic conditions. The total

sample includes 100,948 accidents, 44,215 of which involve injuries whereas 1,308 involves fatal accidents.

The data is particularly useful since it allows to differentiate accidents by their causes. I aggregated the

data into the total number of accidents in a 6-hour window, as well as the number of accidents with at

least one fatality and injured. Also, I aggregated the accidents without any injured in that period.

3.2 Air Pollution and Weather Controls

Air pollution data for the period 2013-2016 comes from the Sistema de Información de Calidad del

Aire (SINCA), a network of monitoring stations operated by the Chilean Ministry of Environment, which

consists of 10 stations placed throughout Santiago.10 The instruments and quality control procedures of

the Santiago monitoring network follow recommendations from the Environmental Protection Agency of

the United States of America and are subject to public scrutiny and occasional external review panels

(Osses et al., 2013).

CO data during the period of study is reported as a 1-hour average per monitor. Each monitor

reports the average number of particles per million. I constructed an aggregate of Santiago’s pollution by

taking the one-hour median of pollution level of the ten monitors stations. Then, I computed a mean of

exposure at a 6-hour block level by averaging the one-hour aggregate pollution. Temperature, humidity,

wind speed and wind direction data come from the same network.11 A similar procedure is followed to

construct the mean 6-hour level of these controls. As pollution and weather controls may differ within

the city, I restricted the analysis to municipalities that have a geographical centroid within 15 km from

a monitoring station.12 This criterion restricts the analysis to 43 municipalities. In Table A.3 I present

the municipalities used in this work.

Precipitation information comes from the Dirección Meteorológica de Chile, an entity under the

Dirección General de Aeronáutica Civil. This data come in a 6-hour total precipitation for the period.

I use measurements from the Quinta Normal station since it was the station with the less missing

9To make the sample comparable, I only take into consideration accidents that occur in a municipality where its centroid’s

location is within 15 km distance from a monitor.
10This paper uses Carbon Monoxide (CO) as the pollutant of interest.
11Temperature is reported in Celsius degrees. Humidity is a measure of relative humidity. Wind direction is the angle of

the wind, relative to the north. Finally, wind speed is measured as meters per second.
12Several articles restrict their sample to the observations near a monitor. Some of them are Schlenker and Walker (2015)

and Currie and Neidell (2005).
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information during the period of the sample.

3.3 Atmospheric Stability

To compute the proxy of atmospheric stability I used data from the Lo Prado and Quinta Normal

stations. This proxy is the difference in temperature between the two stations, which are located at

different altitudes. Both stations rely on the Dirección Meteorológica de Chile and use the same procedure

to measure temperature. Whereas Quinta Normal station is located at 500 meters above the sea level,

Lo Prado is located at 1,100 meters above the sea level. I followed a similar procedure to the one used

in section 3.2 to compute the 6-hours window aggregated temperature average. After computing 6-hour

averages, I estimated the indicator of atmospheric stability as the difference between these temperatures.

3.4 Traffic

The proxy of the number of cars for the years 2013-2016 comes from Santiago’s three main urban

concessionaires.13 Departamento de Coordinación de Concesiones de Obras Públicas (DCCOP), an

entity under the Chilean Ministry of Public Infrastructure, provides this information. The DCCOP

reports traffic flow data by type of car, toll’s location and hour. Data is aggregated to the total number

of cars by the hour. Then, I computed the total number of cars during 6-hour block. I used this data

as proxy of the total number of cars on the street since no reliable data of this variable is collected for

Santiago (Paredes, 2016).

3.5 Descriptive Statistics

Table 1 shows a general description of the data. Panel (a) provides information on the number of

car accidents during a 6-hour block period. The information is split between reports of total, minor,

major, and fatal accidents.14 The mean number of car accidents are 17.27, 9.7, 7.3, and 0.23 accidents

per 6-hour window, respectively. Panel (b) provides information about the number of cars counted by

tolls in urban highways and on the periods of vehicular restrictions. In the sample, 2% of the periods

has vehicular restrictions. Panel (c) shows the main statistics of CO level and atmospheric stability.

[Insert Table 1 here]

Figure 1 panel (a) presents the evolution over time of car accidents. The graph was constructed using

log variables and thus represents the percentage change over time. Although different categories have

different mean level of accidents, each category level of car accident appears to be virtually constant over

time. I also analyze, in Figure 2, the intra-day evolution of accidents. Consistent with the pattern of

cars on the streets, accidents are less frequent at night. However, while night accidents make up only a

20% of the number of accidents during the afternoon (i.e., the 6-hour window from 12 pm to 6 pm), this

relationship changes when analyzing fatal accidents. Nighttime fatal-accidents make up more than 85%

of fatal accidents in the afternoon.
13A concessionaire oversees maintaining the highway for a specified period. Also, they earn the tolls revenues of the

highway for the period. These concessionaires are Grupo Costanera SpA, Vespucio Norte Express, and Autopista Central.
14Minor accidents correspond to accidents without any injuries. Major accidents correspond to accidents with any

injuries.
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[Insert Figure 1 here]

CO level has a strong seasonality with a peak in winter months, as Figure 1 panel (b) shows. The mean

level of CO is 0.56, whereas its distribution is concentrated below 0.7 ppm and its standard deviation

represents 90% of the mean level. The within and between day variation of CO is almost the same in

the same. However, in winter months (May-August) within day variation is higher than between day

variation. For example, for June within day variation is 1.5 times higher than between day variation.

[Insert Figure 2 here]

Finally, panel (c) of Figure 1 shows the evolution of the proxy of vehicles flow during the period.

The graph was constructed using log variables. In the sample vehicles flow has steadily grown over time.

Besides, the proxy has a clear seasonal behavior, increasing in September-December months, whereas

decreasing between January to March.

4 Empirical Strategy

Using a time-series database, I estimated the link between ground level air pollution and contempora-

neous car accidents for the city of Santiago, Chile.

4.1 Basic Specification

The number of car accidents is a function of several factors, such as number of cars on the streets,

visibility, as well as many other atmospheric variables including wind speed, wind direction, temperature,

humidity, and precipitation (WHO, 2015). I identified a new factor by which atmospheric variables affect

the number of car accidents: air pollution. To model the effects, I adopt the following linear model:

yth = β11COth + β12Wth + β13G(Wth) + β14Flowth + β15V Rth + σh + µt + εth (1)

where yth represents the logarithm of the total number of accidents in a day t on a 6-hour window h.15

I chose log accidents because this provides an easier way to interpret the effects of the air pollution in

percentage terms. COth corresponds to the average observed CO level at time t and 6-hour window h.16

The variable Wth is a set of weather controls in the day t and the 6-hour window h, including average wind

speed, temperature, humidity, precipitation, wind direction and the interaction between wind direction

and wind speed. To model this relationship formally, as in Schlenker and Walker (2015), I define wind

direction by the cosine of the difference between the wind direction at each monitor, and the direction in

which Santiago’s centroid is located. The variable will be equal to 1 in the case that the angle in which

the wind is blowing equals the direction in which the centroid is located, and the variable will be equal to

zero when they are at a right angle (the difference is 90o). Controlling for temperature, rainfall, humidity,

15I consider y = log(total accidentsth + 1) as the dependent variable.
16Using 6-hour window allows me to differentiate between night, morning and evening peaks, and off-peak periods,

something that larger hour windows does not allow me to. This is especially important due to car flow have significant

variation between these periods, an issue that can affect the number of car accidents. Besides, using shorter windows

can lead me to overestimate the effect of contemporaneous CO exposure, because of spikes in CO exposure make already

“polluted” drivers have an accident one period earlier.
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and wind speed and direction is essential since air pollution levels have a clear seasonal pattern and these

controls may independently affect car accidents in several ways. Rainfall affects the probability of an

accident, as well as visibility, car flow, and the average speed (Agarwal et al., 2005; Keay and Simmonds,

2005; Maze et al., 2006; Wang et al., 2017). Temperature has also been documented as a risk factor

for car accidents, with higher temperatures increasing the probability of a crash (Basagaña et al., 2015;

Leard and Roth, 2016). Humidity and wind speed can affect crashes by impacting on vehicle stability

and road conditions. Also, controlling for wind direction and its interaction with wind speed allows me to

control for how CO disperses within the city. G(Wth) is the fourth polynomial in mean rainfall and wind

speed. I chose these controls because they reduce my data’s mean squared error.17 V Rth is an indicator

that takes value one if in the day t and window h there was a vehicular restriction, while Flowth is a

proxy of number of cars on the street based on the tolls of urban highways.18 I also control for temporal

variation in car accidents by including 6-hour window fixed effect (σh) and a day fixed effect (µt). Using

6-hour windows fixed effect allows me to control for this window’s common characteristics. For example,

since visibility is one of the leading determinants of car accidents, including σh in the specification will

help me to control the intensity of light during the day. Also, this fixed effect helps me to control for

car-seasonalities within a day, like school entry, rush-hour or drunk drivers. Day fixed effect allows me

to control for within-day invariant characteristics. The parameter of interest is β11, which tells us the

effect of an increase in air pollution concentration on local car accidents. Increases in air pollution lead

to greater exposure for drivers and, presumably by the background discussed before, an increase in car

accidents. Hence, I would expect this coefficient to be positive.

Measuring the car driver’s exposure to pollution is not straightforward. Since an automobile is in

constant movement, the CO to which a driver will be exposed will depend on the length and duration

of the trip, the traffic on the streets, local conditions, etc. This is a severe caveat for my analysis,

since assigning pollution exposure to a driver will depend on variables unknown to the econometrician.19

To overcome this problem, I focus my analysis on average observed CO level at a city level, using a

time-series database that contains Santiago’s average conditions for every variable.

During the period of study, SINCA’s monitors collect information on two more pollutants level:

particulate matter 2.5 and ozone. I acknowledge the detrimental effect of both pollutants on human

health, but I use CO as treatment variable for several reasons. First, the way ozone affects human health

is unlikely to affect car accidents. Second, CO within-day variation is larger than PM2.5 within-day

variation. Larger within-day variation allow me to better estimate the effect of within-day changes in

CO exposure on car accidents. Intraday variation is a relevant aspect of estimating the short-term effect

17I follow González et al. (2017) approach to determine the weather polynomials: first, I randomly separated my database

into two groups. Second, I ran OLS equation 1 using 256 different combinations of polynomials. Then I predict the number

of car accidents for the other subsample using the coefficients found before and calculated the mean squared errors. For

computational reasons, I only did this 35 times. I chose the fourth polynomial in wind speed and precipitation, which were

the combination of controls that minimized the squared mean errors that were repeated the greatest number of times (13

over 35).
18In Santiago, vehicular restrictions are determined by the Unidad Operativa de Control de Transito (UOCT) for all

motorized vehicles when the level of PM10 is higher than the criteria fixed by the law. The restricted cars depend on the

last number of the license plate. The controls are in effect from 7:30 am to 9 pm (6-hour window 2, 3 and half of 4).

Paredes (2016) finds that VR reduces 14% the CO in the air.
19In addition to the problem explained before, exposure to pollution levels is typically endogenous. Since pollution levels

differs within the city, individuals may sort into areas with better air quality depending, in part, on their income (Chay

and Greenstone, 2003).
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of air pollution exposure on car accidents. Although there is increasing evidence of the detrimental impact

of long-term exposure to air pollution on human health that can relate to car accidents, this is not the

focus of the study. Third, CO is mainly emitted by mobile sources. Light-duty vehicles are responsible

for the 90% of the emissions of CO, whereas only for the 20% of PM2.5 (Gallego et al., 2013; Jorquera,

2002; Ministerio del Medio Ambiente de Chile, 2016; O’Ryan et al., 2000). Therefore, this paper focuses

on estimating a new externality of car use. Despite the fact that regulators have focused on cars as an

important source of air pollution, the effect of car pollution on car accidents has not been taken into

consideration for public policies. Finally, I use CO due to a concern about the external validity of Sager’s

results. Arceo et al. (2016) find that the estimated elasticity between CO and infant mortality is larger

in a developing country, like Mexico, than in the US context. On the contrary, the estimated elasticity

of particulate matter is relatively similar. Consequently, if this relationship translates to the pathways

that link air pollution and car accidents, Sager’s results may not be externally valid for Santiago.

4.2 OLS Results

The baseline estimates for the effect of CO exposure on the total number of car accidents are presented

in Table 2. Column 1 shows the correlation controlling for 6-hour window and day fixed effect. In columns

2 and 3, I show the predicted effect including weather and vehicular controls, respectively. Finally, in

column 4 I show the estimates controlling for weather polynomials. Each column of this table reports

three different levels of clustering for standard errors: only adjusted for heteroskedasticity, by day, and

by week-year, reported in parentheses, curly brackets, and squared brackets, respectively. It also presents

the estimated beta coefficient of CO exposure and the mean number of car accidents by period.

[Insert Table 2 here]

These results provide a first statistical test documenting a robust positive correlation between CO

exposure and the total number of car accidents. It shows that the inclusion of linear and nonlinear weather

controls increases the predicted effect of CO exposure. Also, the fit of the model also increases with the

inclusion of these controls, albeit not significantly. By contrast, the addition of vehicular controls does not

change the predicted effect.20 The effect of CO exposure is, in all specifications, statistically significant

at 99% of confidence for all clustering levels.21 These results suggest that CO exposure significantly

increases the number of car accidents. For example, a 10 percent increase in CO exposure raises the total

number of car accidents between 1.4% (the case without nonlinear weather controls) and 1.9% (the case

20One could argue that vehicular restrictions and car flow proxy are an outcome of CO level, and thus constitute a

case of bad controls. Bad controls can cause bias estimations (see Angrist and Pischke, 2008, pg. 64-68). Since vehicular

restrictions are decreed due to a high level of pollution the day before, and this day-before level of air pollution is highly

correlated with contemporaneous air pollution, controlling for VR can lead to problems in the interpretation of the point

estimate. The same concern occurs for the proxy of car flow. Nonetheless, the estimates of Table 2 do not change with the

inclusion of these controls (columns 2-3). Also, in Appendix Table C.1 I estimate the preferred specification including these

controls separately. The point estimates and the fit of the model remain virtually unaltered. Hence, none of the results in

this paper are driven by the inclusion of vehicular controls.
21For the preferred specification (i.e., column 4), standard errors clustered at week-year tend to be larger than the

other two. This pattern holds for all the specifications presented in the paper. Correspondingly, I chose this cluster when

conducting inference, as they tend to be the most conservative approach to avoid over-rejection of the null hypothesis

concerning the statistical significance of the coefficient of interest. Unless otherwise specified, I report standard errors and

statistics of the hypothesis test that are robust to within-week correlation in the error term.
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with nonlinear weather controls). Another way of interpreting the magnitude of the estimated effect is

to analyze the beta coefficients. Beta coefficients show how an increase in one standard deviation of the

independent variable (i.e., CO exposure) affects the dependent variable (i.e., number of car accidents)

regarding its own standard deviation. The point estimates of columns 2-4 suggest that an increase in CO

exposure by one standard deviation leads to an increase between 0.17 and 0.22 in standard deviation of

the number of car accidents. Both methods (i.e., the point estimates and the beta coefficients) suggests

a consistent increase in the number of car accidents due to increases in CO exposure.

One concern about the point estimates reported in Table 2 is that the results are driven by outliers

in CO level and are not representative of the regular CO exposure. Although CO level is far below

international criteria in all observations of the sample, I address this issue in Appendix Table C.2. In

column 1, I estimate Equation 1 using a logarithm transformation of CO exposure, whereas in column

2 I present the point estimate using winsorize at 5% pollution data.22 Both corrections take into con-

sideration outliers: the first one uses a concave transformation of CO level; thus, pollution increases at

a decreasing rate. The second one replaces the lowest and highest 2.5 percentiles with the value of the

2.5 and 97.5 percentiles, respectively. Both results are consistent with the point estimate found in this

section, albeit the beta-coefficients are slightly larger in the estimations of Appendix Table C.2.

These baseline estimates presented above came from a model in which CO exposure is taken as an

exogenous variable. In the following section, I relax this assumption and use an instrumental variables

approach. This approach corrects three possible threats to the interpretation of the point estimates

presented in this section: omitted variables, measurement error in the exposure level of CO, and reverse

causality.

5 IV approach

In the absence of a source of exogenous variation on pollution, it is difficult to interpret the previous

results as causal. Although I attempt to account for several confounding factors, there are three potential

problems with the OLS strategy. First, there may exist omitted transitory determinants of car accidents

that may also covary with pollution and are not considered in the specification. If such omitted variables

exist, the least squares estimate of the coefficient on CO exposure (e.g., β11) will be biased. This could

occur, for example, if weather seasonality within a 6-hour window, like morning fog, affects car accidents.

These omitted variables lead to biased estimates of the effect of CO exposure on car accidents.

A second potential concern is reverse causality. On the one hand, cars are the primary emitters of

CO. For instance, in Santiago more than 90% of carbon monoxide is produced by light vehicles (Gallego

et al., 2013; Jorquera, 2002; Ministerio del Medio Ambiente de Chile, 2016; O’Ryan et al., 2000). On the

other hand, air pollution can affect the number of cars on the street through vehicular restrictions. In

Santiago, if the level of air pollution exceeds certain level decreed by law, 20% of the fleet is banned from

going out on the streets. Also, people may sort and choose not to drive, to protect the environment,

when the pollution level is high. Moreover, susceptible people, such as asthmatic or older adults, may

prefer not to drive in polluted days due to health reasons.

In addition to omitted transitory determinants and reverse causality, measurement error is a third

22Figure 3 presents the 2.5 and 97.5 percentiles as dashed lines.
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concern for an OLS specification. I proxy driver exposure to CO as a 6-hour average of medians across

stations in Santiago. This methodology raises two concerns about the level of exposure. On the one

hand, as I take an average of the levels reported by Santiago’s monitors, this average level may not be

representative of the city’s general air pollution level. Osses et al. (2013) find that two monitors - Parque

O’Higgins and Independencia - are centrally located and representative of general pollution patterns in

metropolitan Santiago. The correlation between the CO proxy used and the level of these two stations is

high, over 0.9 (see Appendix Table A.4 for specifics). On the other hand, I only have the monitors level

of pollution, so the real exposure of driver’s exposure may differ from the station’s measurement. Several

articles have documented that the pollution measurement of fixed monitors differs from measurements

from personal monitors attached to individuals in urban settings (Chang et al., 2000; O’Neill et al., 2003).

Measurement error may underestimate the effect of pollution on car accidents.

To address these potential sources of bias, I need an exogenous source of variation on pollution to use

an instrumental variable approach. This strategy would correct not only for the reverse causality and

omitted variable biases but also for the differential measurement error in the endogenous variable if the

measurement error has a classical form (e.g., Wooldridge, 2002, ch. 5).23 I use atmospheric stability as

an instrument for local air pollution in the following first stage regression equation:

COth = α11ASth + α12Wth + α13G(Wth) + α14Flowth + α15V Rth + δh + ϕt + ψth (2)

where ASth is a continuous indicator of atmospheric stability in day t and 6-hour window h. I cluster

standard errors at the week-year level. The cluster-robust variance-covariance estimator implicitly adjusts

standard errors to adequately account for serial correlation in air pollution over the week. Controlling

for temperature and rainfall is essential for the exclusion restriction to hold since inversions have a clear

seasonal pattern and these variables may independently affect car accidents (Basagaña et al., 2015; Leard

and Roth, 2016; Maze et al., 2006; Wang et al., 2017).24 In the following subsection 5.1, I explain this

instrument.

5.1 Atmospheric Stability as Source of Exogenous Variation in Pollution

I exploit the degree of atmospheric stability, measured as thermal inversions, as a source of exogenous

variation in CO level. This phenomenon consists in a reversal of the temperature’s normal behavior

in the troposphere. While on most days, temperature decreases with altitude, inversion periods are

characterized by increasing temperature as altitude increases. Thermal inversions result in high stability

in the troposphere that does not allow the proper ventilation of pollution.

[Insert Figure 4 here]

An inversion is characterized by its strength, top/base height, and top/base temperatures (see Figure

4). The inversion strength is the difference between the temperature at the top and the base of the

23Instrumental variables attenuate measurement error bias when the error on the independent variable is classical. The

classical form is when measurement error is not correlated with other covariates and with the error term of the regression

of interest (i.e., cov(γ, ε)=0 and cov(γ,X)=0, where γ is the measurement error and X is the covariates of the regression).

For more information about instrumental variables see Wooldridge (2002), ch. 5.
24As Arceo et al. (2016) notice, including humidity and wind speed, is also essential as it is possible that an inversion

can lead to a thunderstorm if moisture is trapped in the inversion.
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inversion. A more stable atmosphere is characterized by having larger inversion strength. The thickness

of an inversion is the difference in altitude between the top and the base of the inversion. The mixing

depth of an inversion is the height from the ground to the bottom of the inversion (Jacobson, 2002).

[Insert Figure 5 here]

Unfortunately, in Santiago there is no station that measures air temperature at different altitudes.

Therefore, I use a proxy of inversion strength as an indicator of atmospheric stability. This proxy is the

difference in temperature between Lo Prado and Quinta Normal stations. Lo Prado station is located

on top of a hill, having an altitude of 1,100 meters above sea level. On the contrary, Quinta Normal

station is located at ground level, having an altitude of 500 meters above sea level. Both stations use the

same methodology to measure temperature. This proxy gives a continuous instrument of atmospheric

stability.

[Insert Figure 6 here]

Because Santiago is located within a valley, it is prone to suffer from thermal inversions. Most of the

inversions occur in the winter months (May-August). However, they also occur in months with relatively

high temperature (December-February). Thermal inversion does not represent a driving risk in itself,

but it may result in a temporary accumulation of air pollutants. The combination of thermal inversions

and Santiago’s geographical topography cause that emissions get trapped in the troposphere (see Figures

5), causing higher levels of air pollution (Garreaud and Rutllant, 2006; Gramsch et al., 2006; Jacobson,

2002; Merino, 2006; Ministerio del Medio Ambiente de Chile, 2016). As Figure 6 shows, there is a strong

relationship between the proxy of atmospheric stability and CO level. Once the sun’s heat raises the

temperature in the atmosphere and the temperature between layers equates (i.e., a reversal of the thermal

inversion), the “lid” effect of the inversion disappears leading to a fall in air pollution levels (Arceo et al.,

2016).

5.2 IV Results

Initially, I show the first-stage results. Table 3 provides the estimates when pollution is instrumented

using atmospheric stability (the results of estimating Equation 2). As atmospheric literature suggested,

thermal inversion is a strong linear predictor of CO level. Column 1 presents the result controlling for

day and 6-hour window fixed effect. The point estimate is positive and highly statistically significant.

This result suggests that one standard deviation increase in atmospheric stability predicts almost a 16%

of a standard deviation increase in CO level. Accounting for weather controls slightly increases the

point estimate. Whereas the inclusion of vehicular controls does not change the point estimate. Finally,

in column 4 I present the result of the preferred specification. The point estimate prevails positive

and statistically significant, albeit a little bit larger than in previous specifications. In the preferred

specification, an increase of one standard deviation predicts almost a quarter of a standard deviation

increase in CO level. Although the point estimates remains quite stable for the four specifications, the

fit of the model substantially increases in column 4. Therefore, including nonlinearities in temperature

and wind speed increases the explanatory power of the model, measured as R-squared.

[Insert Table 3 here]
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Table 4 presents IV estimate for the preferred specification from Table 2. The sign and effect of the

estimate are following the effect documented by the medical literature. However, the point estimate is

statistically insignificant. Therefore, after instrumenting observed CO exposure with plausible exogenous

variation in atmospheric stability, I do not find evidence that CO exposure has an impact on the total

number of car accidents. For example, the point estimate suggests -albeit highly statistically insignificant-

that one standard deviation increase in CO exposure is associated with a small effect on total car

accidents: an increase of 0.005 accidents per 6-hour window. Just for seek of comparison, the OLS point

estimate is larger that the IV estimate.

[Insert Table 4 here]

The results from Table 4 suggests that, using instrumental variables to estimate Equation 1, there is

no linear impact of CO exposure on the total number of car accidents. However, epidemiology literature

has documented diminishing marginal damage of the dose-response function at medium-low levels of CO

exposure. If this relationship translates to the ways in which air pollution and car accidents relate, one

should expect a nonlinear relationship between CO exposure and the total number of car accidents. In

the following subsection 5.3, I take into consideration this possibility.

5.3 Nonlinearities in the Pollution-Accident Relationship

Epidemiology literature had documented that the health dose-response function is nonlinear in the

pollutant level (Ezzati and Kammen, 2001; Pope et al., 2009, 2011). To test if this nonlinearity in health

translates to the relationship between air pollution and the total number of car accidents, I estimate the

following model:

yth = β21COth + β22CO
2
th + β23Wth + β24G(Wth) + β25Flowth + β26V Rth + σh + µt + εth (3)

where CO2
th is the second moment of the observed CO exposure. Since epidemiological literature has

documented that the marginal effect in dose-response function of CO is not linear, increasing at a

decreasing rate at low exposure, I expect that β22 has a negative sign.

One problem that arises is that using IV to estimate Equation 3 is a well-known case of forbidden

regression.25 In order to give a causal interpretation of the results, I estimate β21 and β22 using a

Control Function approach (Newey et al., 1999). This method relies on, at least, one instrument. Adding

the estimated residuals of the first stage (i.e., ψ̂th of Equation 2) introduces exogenous variation that

serves as the control function. By adding an appropriate control function, the endogenous explanatory

variables, COth and CO2
th in this case, become appropriate exogenous in a second-stage estimating

equation (Wooldridge, 2015). While including first-stage error purges the estimates of the various biases

outlined in Section 5, the standard errors need to be corrected for the variation coming from the first-

stage estimation. In order to account for the first-stage sampling error, I obtain standard errors from

1000 bootstrap draws. For more details about control function methods see Wooldridge (2002), ch. 18.

Table 5 presents the estimates on the effect of nonlinear pollution exposure on car accidents. Column

1 does not include a control function, whereas column 2 adds the estimated errors of the first-stage.

25A forbidden regression crops up when the econometrician applies 2SLS reasoning directly to nonlinear models. For

more information see Angrist and Pischke (2008), pg. 190-192.
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This table shows that including the control function, changes the point estimates of CO exposure. In

column 2, both coefficients associated with CO are statistically significant at usual levels. Also, the error

term (i.e., ψ̂th) is statistically significant at the 1%, giving an informal test of endogeneity in the OLS

approach.

[Insert Table 5 here]

Adding a second moment of CO exposure changes the model. I now analyze the fit of the nonlinear

model. The root mean squared error of the nonlinear estimation is 0.374, value that is lower than the

RMSE of the linear approach (0.448). Besides, the F-value of joint significance of the parameters is larger

in the nonlinear model estimation. Furthermore, the same pattern occurs when I compare the R-squared

of both models. Therefore, the nonlinear model seems to better fit the data.

[Insert Figure 7 here]

I now turn to the analysis of the predicted effect of nonlinear CO exposure. Figure 7 plots the

predicted marginal effect. The effect is statistically different from zero, and increasing in observed CO

exposure until a threshold exposure of 0.632 ppm. This estimated threshold corresponds to the 75th

percentile of the CO distribution. After that level, the marginal effect is negative. However, in higher

percentiles, the marginal effect is not precisely estimated. Also, and just for comparison, Appendix

Figure B.1 plots the predicted marginal effect for OLS and CF approach. The predicted impact of CO is

larger in CF approach for low levels of exposure. However, after the 70th percentile of CO distribution,

the OLS predicted effect is larger than CF effect.

To summarize, exploiting a plausible exogenous variation in atmospheric stability I do not find any

significant impact on car accidents due to linear CO exposure. By contrast, once accounting for nonlin-

earities in CO exposure, I find evidence of a positive impact of CO exposure on car accidents, even at

low levels of CO exposure.

6 Exploring Channels and Robustness Check

6.1 Disaggregate Effect

In this section, I explore the heterogeneous effect of CO exposure on car accidents according to their

severity. I construct three different categories of accidents, based on the impact of the accident on drivers

and pedestrian affected.26 The method of estimation is analogous to the one used in Subsection 5.2 and

5.3, but restricting the dependent variable to the (logarithm) number of minor, major, and fatal accidents,

respectively. Medical literature has documented that CO exposure leads to physical symptoms, such as

headaches and dizziness. Petridou and Moustaki (2000) find that physical discomfort has a larger impact

on nonfatal accidents. Consequently, I expect that CO exposure has a larger effect on minor and major

accidents than on fatal accidents.

Table 6 presents the results of the disaggregated effect that CO exposure has on the number of car

accidents. Panel (a) shows the results for minor accidents, while panel (b) presents them for major

26I follow Otero and Rau (2017) classification. Minor accidents are accidents where no one results injured. Major

accidents are accidents with injuries but no fatalities. Fatal accidents are accidents with, at least, one death.
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accidents. Finally, panel (c) presents the point estimates using fatal accidents as the dependent variable.

Columns (1) and (2) present the estimates for a linear model of CO exposure, while columns (3) and (4)

present the estimates for the nonlinear effect of CO exposure. Odd columns present an OLS approach,

whereas even columns report an IV and CF approach.

[Insert Table 6 here]

The results in panels (a) and (b) are similar to the estimates from Section 5. These panels report

that, under linear specification, there is not a statistically significant impact of CO on the aggregated

number of minor and major accidents (column (2)). Also, both point estimates are virtually the same.

Just for comparison, the impact of air pollution on total car accidents - albeit highly insignificant- is

slightly larger than the estimated effect on minor and major accidents. Nonlinear CO exposure is, as in

the previous section, statistically significant in both panels (both estimations are jointly significant at

the 1%). Appendix Figure B.2 plots the predicted marginal effect of CO exposure on car accidents by

its severity. As in the linear model, the predicted effect on total accidents is larger than the predicted

effect on nonfatal accidents. Both predicted effects follow the same pattern, albeit the impact on minor

accidents is slightly larger. These results suggest that a 10% increase in CO exposure from the mean

level leads to a 0.4% increase in minor accidents and 0,37% increase in major accidents.

The results in panel (c) are less robust than the results of previous panels. The estimated effect is not

statistically significant at usual levels of confidence in linear and nonlinear models. For the IV approach,

the sign of the point estimate reverses, but remains statistically insignificant. It is important to notice

that the explanatory power of the model, measured as R-squared, decreases substantially. Therefore,

even after instrumenting CO exposure with plausible exogenous variation in atmospheric stability, I do

not find an effect on fatal accidents.

Considering the results if this section, I have evidence of a positive impact of CO exposure on minor

and major accidents. By contrast, no effect is found on fatal accidents. These results are in line with the

potential ways that relate CO exposure and car accidents, as discussed in Section 2.

6.2 Potential confounding sources of variation

A common challenge in studies linking health outcomes to pollution measures is that ambient air

pollutants are highly correlated. During the period of study, SINCA’s network has readings for three

different pollutants that have been documented as hazardous to human health: ozone, particulate matter

2.5 (PM2.5), and CO. Although ozone exposure is harmful to human health, the main way that this

compound affects human health is through irritation in lung airways (EPA, 2006a; Folinsbee and Hazucha,

2000; Folinsbee and Horvath, 1986; Kampa and Castanas, 2008), a symptom that is unlikely to affect

the total number of car accidents.

In relation with PM2.5, it has been shown that this compound can penetrate deep into human lungs

and can pass beyond, towards the circulatory system, to induce both respiratory and cardiovascular

effects (Seaton et al., 1995). Also, PM2.5 can cause more subtle effects such as changes in blood pressure,

irritation in the ear, nose, throat, and lungs, mild headaches and changes in hormonal levels (Ghio et al.,

2000; Li et al., 2017; Pope, 2000).27 CO and PM2.5 are both highly correlated, with a peak level during

27Blood pressure can have many effects on human health, going from cognitive changes to a higher risk of having a stroke
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the winter months, as it is shown in Figure 8’s panel (a). Moreover, panel (b) shows that even within-day

variation is highly correlated between CO and PM2.5. Nonetheless, Appendix Table C.3 suggests that

the results using PM2.5 as the pollutant of interest are qualitatively the same as the estimates found in

Sections 4.2 and 5.

Unfortunately, I cannot empirically test the separate effect of CO and PM2.5 exposure on the total

number of car accidents. However, in Appendix Table C.4 I provide two different tests to show that the

estimated aggregate effect of air pollution is virtually the same as the point estimate found in previous

sections. Panel (a) presents the point estimates using a Principal Component Analysis as treatment

variable, whereas panel (b) presents the estimates using a 6-hour average Air Quality Index as observed

pollution exposure.28,29 For both aggregated measures, PCA and AQI, the beta coefficients of the linear

model remain virtually unaltered. However, as the results shown in Section 5, the point estimates are

highly insignificant. I interpret these findings as evidence that the linear impact of CO exposure on car

accidents does not differ from the aggregated effect of air pollution. By contrast, the nonlinear model

is less conclusive. On the one hand, PCA’s predicted marginal effect is comparable in magnitude and

significance with previous findings. On the other hand, AQI estimation is not statistically significant.

These results suggest that, although nonlinear CO exposure has a positive effect on the number of car

accidents, the findings for aggregated levels of pollution are not conclusive.

6.3 Temporal displacement and dynamics

The baseline regression model examines only the contemporary effect of CO exposure on total accidents.

Contemporaneous estimates may lead to overestimating the total effect of CO on the total number of car

accidents if spikes in 6-hour CO exposure make already “polluted” drivers have an accident one period

earlier. In other words, the contemporaneous model may overestimate the real effect associated with

permanently higher pollution exposure. Conversely, the contemporaneous effect can be underestimated if

the number of car accidents responds sluggishly to changes in air pollution. For instance, if CO exposure

impacts health in a period larger than 6 hours, the contemporaneous effect may be underestimated.

Therefore, by only looking at contemporaneous response of car accidents to present pollution shocks, the

estimates may be neglecting important dynamic effects of pollution on car accidents. I use Schlenker and

Walker (2015)’s approach to explore these possible dynamics by estimating the following distributed lag

model, including four lags in the CO exposure:

yth =

4∑
k=0

β1kĈOt(h−k) + β15Wth + β16G(Wth) + β17Flowth + β18V Rth + σh + µt + εth (4)

where ĈOth is the instrumented CO exposure from previous sections.30 Table 7 presents the results

for Equation 4. I present individual coefficients as well as the cumulative effect (the sum of the five

coefficients). Column 1 presents the OLS estimates of the lagged model, whereas column (2) shows the

IV results.

(Collins et al., 1990).
28Principal Component Analysis is a statistical procedure that uses orthogonal transformation to convert a set of obser-

vations of possibly correlated variables, CO and PM2.5 in this case, into a set of values of linearly uncorrelated variables.
29Air Quality Index (AQI) is an aggregate composite measure of pollution developed by the U.S. Environmental Protection

Agency (EPA, 2006b). The AQI ranges from 0 to 500 to rank air quality based on its associated health risks. I estimate

Santiago’s AQI level using CO and PM2.5 as pollutants, using the EPA’s algorithm.
30Unfortunately, I cannot extend this approach to nonlinear effect in observed CO exposure.
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[Insert Table 7 here]

The cumulative effect is statistically equal to the contemporaneous point estimate in the IV approach.

Also, the cumulative effect is larger than the comparable result in Table 4, albeit not statistically sig-

nificant. This increase in the predicted effect might be because drivers exposed to already high levels of

pollution are more likely to be affected by contemporaneous CO levels. However, the exact dynamics are

hard to determine empirically given the lack of significance of the individual coefficients.

6.4 Count Model

The baseline estimates consist of a linear model relating the total number of car accidents to changes in

CO exposure. To account for the non-negative and discrete nature of car accidents data, Table 8 presents

the estimates of a quasi-maximum likelihood, conditional Poisson IV estimator. The dependent variable

is the total number of car accidents, which differs from the previous dependent variable since I do not

use a logarithmic transformation. As I use a CF approach to address issues about measurement error,

reverse causality, and omitted variables, I adjust standard errors using bootstrap sampling procedure.

Analogous to previous sections, I find that the linear CO exposure does not have any statistical effect,

whereas adding the second moment of observed CO exposure suggests that total car accidents are sensitive

to pollution fluctuations.

[Insert Table 8 here]

The coefficients no longer give marginal impacts and are difficult to interpret. To compare the

marginal impacts of pollution exposure and total car accidents, Appendix Table C.5 presents the predicted

increase in car accidents from one standard deviation increase in CO exposure. Column (1) and (3)

present the OLS approach, whereas columns (2) and (4) show the IV and CF approach, respectively.

Impacts are evaluated in the sample mean for nonlinear models. The results from the Poisson model are

larger for IV and CF approach. Both types of models suggest that CO exposure has a small and positive

effect on car accidents. For example, under nonlinear CO exposure, one standard deviation leads to an

increase of 0.26 accidents in the CF approach and 0.62 in the Poisson count model.

6.5 Placebo Test

A key identifying assumption for IV estimates is the exclusion condition. This assumption allows the

use of atmospheric stability as valid exogenous variation in CO level. A potential threat to this assumption

is that atmospheric stability may, somehow, covary with car accidents through reasons unrelated to CO

exposure (e.g., if atmospheric stability follows the same trend that economic activity, the instrument

would also covary with economic activity, a variable that also affects car accidents).

To investigate the validity of this assumption, I analyze the predicted effect of CO exposure replacing

Santiago’s CO level with the analogous series from 5 other Chilean cities. I choose these cities because

(i) all of them are located over 100 km from Santiago, (ii) the CO data was available for, at least, 75%

of the observations in the study period, and (iii) most of them are cities with high economic activity.

Ministerio del Medio Ambiente de Chile (2016) shows that emission sources are relatively similar among

regions and the intra-day peaks are very correlated. Consequently, if there exists an alternative pathway
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whereby atmospheric stability affects car accidents, the estimated effect for the placebo CO should be

positive. Appendix Table C.6 presents the point estimates of the respective CO placebo series by city,

under a nonlinear exposure model. The estimated point estimates are not significant for four out of five

estimations. The predicted marginal effect of the “significant” estimate is not statistically different from

zero. Also, Appendix Figure B.3 plots the marginal effect of the placebo estimates. As before, none of

them are statistically different from zero.

6.6 Economic Cost

In this section, I monetize the economic benefit from a 20% reduction in the average CO level over the

total number of major car accidents. In Chile, two studies document the monetary cost of car accidents.

In both studies, the associated costs of a car accident includes direct treatment, incident investigation,

and on-the-road externalities. On the one hand, Hojman et al. (2005) estimate the value of life and

the costs of severe injuries on traffic accidents. Unfortunately, they do not report the value of other

types of accidents. On the other hand, CITRA (1996) has valuations for all types of accidents, but

their estimates are substantially understated compared to other international evidence (Hojman et al.,

2005).31 To obtain a more precise estimate for the value of minor accidents, I use the life value given by

Hojman et al. (2005) but estimate the minor accident cost using CITRA (1996)’s minor injuries relative

cost ratio.32

Using the predicted effect on car accidents under nonlinear CO exposure given in Table 6’s panel

(b), a 20% reduction, from the mean values, in the yearly CO average level leads to more than USD $1

million benefits in the costs of minor injuries.33 I view this estimated benefit of reducing the average

CO level as a lower bound for four reasons. First, I only take into consideration the cost of value life,

not taking into consideration other costs that arise from car accidents, such as congestion. Car accidents

are associated with an increase in traffic congestion. Basso and Silva (2014) and Nelson et al. (2007)

find that urban transport policies can be very effective in improving people’s welfare due to diminutions

in transportation time. Consequently, congestion reduction is an economic benefit not measured in

this analysis. Second, in order to give a conservative estimate, I consider all injuries as minor. This

assumption considerably understates the economic benefits since CITRA (1996)’s ratios are larger for

moderate and serious injuries. Also, I assume that there was only one victim per car. Third, I only count

for reported car accidents - any accident that the drivers agree to not report to the police officers are not

taken into consideration. Also, Gonzalez and Rizzi (2016) argues that CONASET’s database does not

follow up on the people affected by the car accidents, understating the number of fatalities and injuries.

Finally, I only take into consideration accidents that occurred in a restricted number of municipalities.

If a driver is exposed in the sample municipalities but has an accident outside them, it is not being

31This difference is, in part, explained since CITRA document use the human capital approach.
32CITRA document was elaborated to provide a reliable scale to compare safety programs. In this document, it was

estimated that the ratio between the cost of deaths and serious, moderate, and minor injuries was 0.5, 0.13, and 0.03,

respectively. I explicitly assume that the ratio between fatal accidents and nonfatal accidents for Hojman et al. (2005) and

CITRA (1996) is similar for all injury types.
33I estimate that the total number of accidents with injuries is reduced by 79.4 accidents per year. To monetize this

result, I use Otero and Rau (2017) approach and update the UF and exchange rate to current values. Specifically,

US$300, 000︸ ︷︷ ︸
Value of life

×
CLP$600

CLP$653︸ ︷︷ ︸
Chilean exchange rate

×
UF28, 781

UF17, 318︸ ︷︷ ︸
Inflation rate between 2005 and 2017

× 0.03︸︷︷︸
Death to minor injuries ratio

× 79.4︸︷︷︸
Increase in car accidents

20



considered in the estimation.

7 Conclusions

This paper adds to the vast economic literature that seeks to understand the determinants of car

accidents. In particular, it contributes to understanding the role of environmental factors by rigorously

looking at the empirical relationship between CO exposure and the total number of car accidents. Using

a time-series database for Santiago city between 2013 and 2016, I found a strong correlation between

contemporaneous air pollution and the total number of car accidents. This result is consistent with the

documented ways that air pollution may affect car accidents.

To determine whether this relationship is causal, I pursued an instrumental variable strategy. I

exploit the plausible exogenous variation in atmospheric stability to instrument CO exposure. The IV

results suggest a positive nonlinear impact of CO exposure on car accidents for low percentiles of the

CO distribution. After a threshold level corresponding to the 75th percentile, the marginal effects are

less conclusive. This result suggests a sizable economic benefit of reducing the average CO level: a 20%

decrease in the average CO level leads to more than USD 1 million increase in social welfare, driven by

a reduction in accidents.

I then turn to the heterogeneous impact that air pollution has on accidents according to their severity.

I found that the estimated effect is driven by nonfatal accidents. Indeed, I found no impact on fatal

accidents. The results hold under a battery of robustness checks. I found no evidence of temporal

displacement on the effect of air pollution. Also, I found that the results do not differ from using an

aggregate level of pollution as treatment variable. However, this result is less robust than previous

estimations. Finally, I falsify Santiago’s CO average level, replacing it with pollution levels from cities

across Chile. I found no impact in the falsification tests.

The detrimental effect of air pollution on car accidents has important policy implications. For in-

stance, restrictions on car circulation may have unexpected benefits on the number of car accidents,

since cars are the leading emitters of CO. Moreover, this result provides new evidence for regulators to

revise current air pollution standards, since I found evidence of a harmful effect of CO at levels far below

current criteria.
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Figure 1: Evolution of accidents, vehicle flow and pollution over time (2013-2016)
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Figure 2: Evolution of car accidents over day (2013-2016)
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Figure 4: Thermal inversions characteristics. Figure comes from Jacobson (2002)
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Figure 5: Thermal inversions. (a) Without Inversions, Pollutants Rise; (b) Pollutants are Trapped.

Figure comes from Arceo et al. (2016)
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Tables

Table 1

Sample Statistics

Mean Standard deviation Observations Maximum Minimum

(1) (2) (3) (4) (5)

Panel (a): Car accidents

All 17.27 9.91 5,844 68 0

Minor Accidents 9.71 6.18 5,844 40 0

Major Accidents 7.33 4.67 5,844 28 0

Fatal Accidents 0.23 0.48 5,844 3 0

Panel (b): Highways toll

All types of cars 364,019.2 400,376.6 5,844 1,747,0324 61,911

Vehicular Restrictions 0.02 0.13 5,844 1 0

Panel (c): Pollution and Thermal Inversions

Median Carbon Monoxide 6-hour avg (CO) .56 .50 5,844 3.63 .1

Stability -1.69 4.43 5,777 15.12 -20.30

Note: This Table provides descriptive statistics for the key variables in the regression analysis. The unit of observation is a 6-hour window. Panel (a) provides

information on car accidents, while panel (b) provides information on the number of cars circulating and vehicular restrictions. Panel (c) reports information on

carbon monoxide and atmospheric stability. The sample has observations for four years, divided into 6-hour windows.
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Table 2

OLS Estimates: Impact of Carbon Monoxide on Total Number of Car Accidents

Dep. Var.:Ln(1+ Total Number of Car Accidents)

(1) (2) (3) (4)

Carbon Monoxide 0.257*** 0.266*** 0.266*** 0.345***

Robust s.e (0.020) (0.020) (0.020) (0.024)

s.e. clustered at day level {0.020} {0.020} {0.020} {0.024}
s.e. clustered at week level [0.020] [0.021] [0.021] [0.026]

Beta coefficient 0.165 0.170 0.170 0.221

Mean Number of Accidents 17.27 17.27 17.27 17.27

R-squared 0.728 0.729 0.729 0.734

N 5,844 5,627 5,627 5,627

6-hour window FE Yes Yes Yes Yes

Day FE Yes Yes Yes Yes

Weather Controls No Yes Yes Yes

Vehicular Controls No No Yes Yes

Weather Polynomial No No No Yes

Note: *** p<0.01, ** p<0.05, * p<0.1. The unit of observation is a 6-hour window.

Dependent Variable is the logarithm of the total number of car accidents. Each coefficient

corresponds to a separate regression. All the specifications include 6-hour window fixed

effect and day fixed effect. Weather controls are 6-hour average humidity, temperature,

rainfall, wind speed, wind direction and the interaction of wind direction and wind speed.

It also includes a fourth polynomial in rainfall and wind speed. Vehicular Controls include

a proxy of the number of cars on the streets and vehicular restrictions.
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Table 3

IV Estimates: The Effect of Atmospheric Stability on CO (First Stage)

Dep. Var.: 6-hour CO average

(1) (2) (3) (4)

Atmospheric Stability 0.018*** 0.021*** 0.021*** 0.025***

(0.004) (0.004) (0.004) (0.003)

Mean Level of CO 0.56 0.56 0.56 0.56

R-squared 0.259 0.280 0.280 0.417

N 5,844 5,627 5,627 5,627

6-hour window FE Yes Yes Yes Yes

Day FE Yes Yes Yes Yes

Weather Controls No Yes Yes Yes

Vehicular Controls No No Yes Yes

Weather Polynomial No No No Yes

Note: Robust standard errors clustered at the week-year level in parentheses.

*** p<0.01, ** p<0.05, * p<0.1. The unit of observation is a 6-hour window.

Dependent Variable is 6-hour CO average. Each column corresponds to a sep-

arate regression. Weather controls are 6-hour average humidity, temperature,

rainfall, wind speed, wind direction and the interaction of wind direction and

wind speed. It also includes a fourth polynomial in rainfall and wind speed.

Vehicular Controls include a proxy of the number of cars on the streets and

vehicular restrictions.
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Table 4

IV Estimates: CO and Number of Car Accidents

Dep. Var. Ln(1+ Total Number of Car Accidents)

(1)

CO 0.006

(0.106)

Mean Number of Accidents 17.27

R-squared 0.723

N 5,564

F 410.51

F-Statistic 52.95

Note: Robust standard errors clustered at the week-year level in parenthe-

ses. *** p<0.01, ** p<0.05, * p<0.1. The unit of observation is a 6-hour

window. Dependent Variable is the logarithm of the total number of car

accidents. The regression includes weather controls, weather polynomials,

vehicular controls, 6-hour window fixed effect and day fixed effect. Weather

controls are 6-hour average humidity, temperature, rainfall, wind speed,

wind direction and the interaction of wind direction and wind speed. It also

includes a fourth polynomial in rainfall and wind speed. Vehicular Con-

trols include a proxy of the number of cars on the streets and vehicular

restrictions.
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Table 5

Impact of Non Linear CO on Total Number of Car Accidents

Dep. Var. Ln(1+ Total Number of Car Accidents)

(1) (2)

CO 0.875*** 0.287***

(0.072) (0.110)

CO2 -0.194*** -0.227***

(0.022) (0.022)

Mean Number of Accidents 17.27 17.27

R-squared 0.741 0.744

N 5,627 5,565

H0: β21 = β22 = 0 282.02 106.00

Note: Standard errors are obtained from 1000 bootstrap draws. *** p<0.01,

** p<0.05, * p<0.1. The unit of observation is a 6-hour window. Dependent

Variable is the logarithm of the total number of car accidents. Each column

corresponds to a separate regression. Column (1) presents OLS point esti-

mate, while Column (2) uses Control Function approach. All specifications

include weather controls, weather polynomials, vehicular controls, 6-hour

window fixed effect and day fixed effect. Weather controls are 6-hour av-

erage humidity, temperature, rainfall, wind speed, wind direction and the

interaction of wind direction and wind speed. It also includes a fourth poly-

nomial in rainfall and wind speed. Vehicular Controls include a proxy of

the number of cars on the streets and vehicular restrictions.
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Table 6

Disaggregated Effect of CO over Car Accidents

(1) (2) (3) (4)

Panel a: Minor Accidents

Dep. Var.:Ln(1+ Total Number of Minor Accidents)

CO 0.311*** 0.047 0.837*** 0.319***

(0.027) (0.120) (0.069) (0.121)

CO2 -0.193*** -0.220***

(0.023) (0.024)

Mean Number of Accidents 9.71 9.71 9.71 9.71

R-squared 0.687 0.679 0.692 0.694

N 5,627 5,564 5,627 5,565

Panel b: Major Accidents

Dep. Var.:Ln(1+ Total Number of Major Accidents)

CO 0.309*** 0.044 0.771*** 0.288*

(0.028) (0.128) (0.068) (0.158)

CO2 -0.169*** -0.197***

(0.021) (0.023)

Mean Number of Accidents 7.33 7.33 7.33 7.33

R-squared 0.663 0.650 0.668 0.669

N 5,627 5,565 5,627 5,565

Panel c: Fatal Accidents

Dep. Var.:Ln(1+ Total Number of Fatal Accidents)

CO 0.042*** -0.175 0.069 -0.149

(0.016) (0.108) (0.047) (0.100)

CO2 -0.010 -0.021

(0.017) (0.018)

Mean Number of Accidents 0.23 0.23 0.23 0.23

R-squared 0.029 0.027 0.029 0.030

N 5,627 5,565 5,627 5,565

Note: For columns (1) and (2) standard errors are clustered at week-year level. For columns

(3) and (4) standard errors are obtained from 1000 bootstrap draws. *** p<0.01, ** p<0.05,

* p<0.1. The unit of observation is a 6-hour window. Dependent Variable in panel (a),

panel (b) and panel (c) is (log+1) total minor, major and fatal accidents, respectively. Odd

columns present OLS estimates, whereas even columns present IV and CF approaches. Each

coefficient corresponds to a separate regression. All the specifications include 6-hour window

fixed effect and day fixed effect. Weather controls are 6-hour average humidity, temperature,

rainfall, wind speed, wind direction and the interaction of wind direction and wind speed. It

also includes a fourth polynomial in rainfall and wind speed. Vehicular Controls include a

proxy of the number of cars on the streets and vehicular restrictions.
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Table 7

Total Number of Car Accidents and Pollution - Lagged Pollution

(1) (2)

Pollution in t 0.350*** 0.024

(0.025) (0.130)

Pollution in t-1 -0.098** -0.004

(0.041) (0.060)

Pollution in t-2 -0.001 0.031

(0.032) (0.061)

Pollution in t-4 -0.018 -0.059

(0.032) 0.057)

Pollution in t-4 -0.025 0.036

(0.032) (0.050)

Cum. Effect 0.208* 0.027

(0.116) (0.205)

R-squared 0.737 0.722

N 5,623 5,623

Note: Standard errors are obtained from 1000 bootstrap draws. ***

p<0.01, ** p<0.05, * p<0.1. The unit of observation is a 6-hour win-

dow. Dependent Variable is the logarithm of the total number of car

accidents. Each coefficient corresponds to a separate regression. This

table replicates Tables 2 and 4 except that four lags of the pollution and

instrumented pollution levels are included. Column (1) present OLS

estimates, whereas Column (2) present IV estimates. Cumulative ef-

fect corresponds to the sum of all five coefficients. All the specifications

include weather controls, vehicular controls and weather polynomials

6-hour window fixed effect and day fixed effect. Weather controls are

6-hour average humidity, temperature, rainfall, wind speed, wind di-

rection and the interaction of wind direction and wind speed. It also

includes a fourth polynomial in rainfall and wind speed. Vehicular

Controls include a proxy of the number of cars on the streets and

vehicular restrictions.
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Table 8

Total Number of Car Accidents and CO - Count Model

(1) (2) (3) (4)

CO 0.182*** 0.057 0.568*** 0.248***

(0.019) (0.086) (0.043) (0.083)

CO2 -0.136*** -0.156***

(0.015) (0.016)

N 5,626 5,564 5,626 5,564

Note: Standard errors are obtained from 1000 bootstrap

draws. *** p<0.01, ** p<0.05, * p<0.1. The unit of ob-

servation is a 6-hour window. Dependent Variable is the

logarithm of the total number of car accidents. Each coeffi-

cient corresponds to a separate regression. This table repli-

cates Tables 2, 4 and 5 using a count model. Odd columns

present OLS estimates whereas even columns present IV

estimates. All the specifications include weather controls,

vehicular controls and weather polynomials 6-hour window

fixed effect and day fixed effect. Weather controls are 6-

hour average humidity, temperature, rainfall, wind speed,

wind direction and the interaction of wind direction and

wind speed. It also includes a fourth polynomial in rainfall

and wind speed. Vehicular Controls include a proxy of the

number of cars on the streets and vehicular restrictions.
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A Data

Table A.1

Types of Accidents

Cause: Panel A

Brakes

Steering

Electric

Suspension

Tires

Motor

Chasis

Overtaking without enough time and space

Overtaking without making corresponding signal

Forward by the berm

Forward surpassing continuous line

Overtaking on bends crossing, slope, tunnel, etc.

Driving under the influence of alcohol

Driving under influence of drugs or narcotics

Driving against the traffic direction

Driving while intoxicated

Driving poor physical conditions (fatigue, sleep or others)

Driving on the left axis of the road

Not attentive to driving traffic conditions

Driving without reasonable or prudent distance

Surprisingly change of way

No respect pedestrian passage

No respect vehicle passage

Passenger goes up or down while the vehicle is moving

Passenger traveling in the vehicle sill

Recklessness passenger

Drunk passenger

Pedestrian remains in the driveway

Pedestrian careless crossing

Recklessness pedestrian
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Table A.2

Types of Accidents

Cause: Panel B

Drunk pedestrian

Pedestrian crosses pedestrians step out

Pedestrian crossing road or highway with no precautions

Traffic light not visible or maintained defectively

Disobey traffic red light

Disobey policeman indication

Disobey yield sign

Disobey stop sign

Disobey other signage

Traffic light in disrepair

Disobey traffic light flashing

Greater than the permitted speed

Not reasonable or prudent speed

Not reduce speed in intersection, road, etc

Excess of speed in restricted zones

Lower than minimum speed

Greater than the permitted load to vehicle

Load obstructs driver visual

Loads slips on driveaway

Load vehicle structure protrudes

Improper turning

Animals on the road

Backwards driving

Vehicle detention without signaling or deficient

Loss control of the vehicle

Suicide

Unidentified motives

Other causes

Escape by criminal act
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Table A.3

Municipalities

Buin Padre Hurtado La Granja

Calera de Tango Paine San Joaquin Cerrillos

Penaflor La Pintana

Cerro Navia Penalolen San Miguel

Colina Pedro Aguirre Cerda La Reina

Conchali Pirque San Ramon

El Bosque Providencia Las Condes

El Monte Pudahuel Santiago

Estacion Central Puente Alto Lo Espejo

Huechuraba Quilicura Talagante

Independencia Quinta Normal Lo Prado

Isla de Maipo Recoleta Vitacura

La Cisterna Renca Macul

La Florida San Bernardo Nunoa

Maipu

Table A.4

Correlation between computed average and representative monitor.

Average CO 6-hour block Average PM2.5 6-hour

(1) (2)

Parque O’higgins’ monitor 0.9141 0.9252

Independencia’s monitor 0.9315 0.9261

Notes: This Table presents the correlation between two representative station of Santiago’s

pollution (Osses et al., 2013) and the average used.

Table A.5

6-hour window

Hours in the block Window ID

From 00:00 am to 06:00 am 1

From 06:00 am to 12:00 pm 2

From 12:00 pm to 06:00 pm 3

From 06:00 pm to 00:00 am 4

Notes: This Table presents the 6-hours window

used in this work.
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B Appendix Figures
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Figure B.1: Marginal Effect of CO observed exposure over total car accidents. OLS and CF approach.
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Figure B.2: Marginal Effect of CO observed exposure over accidents.
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Figure B.3: Marginal Effect of CO observed exposure over accidents. Placebo Test.
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C Appendix Tables

Table C.1

OLS Estimates: Impact of Carbon Monoxide on Total Number of Car Accidents

Dep. Var.:Ln(1+ Total Number of Car Accidents)

(1) (2) (3) (4)

CO 0.344*** 0.345*** 0.344*** 0.345***

(0.026) (0.026) (0.026) (0.026)

6-hour window FE Yes Yes Yes Yes

Day FE Yes Yes Yes Yes

Proxy of Car on the Streets No Yes No Yes

Vehicular Restrictions No No Yes Yes

R-squared 0.735 0.736 0.735 0.736

N 5,627 5,627 5,627 5,627

F 441.98 426.47 430.59 416.12

Note: Robust standard errors clustered at week-year level. *** p<0.01, ** p<0.05, *

p<0.1. The unit of observation is a 6-hour window. Dependent Variable is the loga-

rithm of the total number of car accidents. Each coefficient corresponds to a separate

regression. All the specifications include 6-hour window fixed effect and day fixed effect.

Column (1) does not include any vehicular controls. Columns (2) and (3) add a proxy

of cars on the streets and an indicator of vehicular restrictions, respectively. Column

(4) include both vehicular controls. Weather controls are 6-hour average humidity, tem-

perature, rainfall, wind speed, wind direction and the interaction of wind direction and

wind speed. It also includes a fourth polynomial in rainfall and wind speed.
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Table C.2

OLS Estimates: Impact of Carbon Monoxide on Total Number of Car Accidents

Dep. Var.:Ln(1+ Total Number of Car Accidents)

(1) (2)

Pollutant 0.834*** 0.515***

(0.054) (0.032)

Beta Coefficient 0.284 0.277

R-squared 0.740 0.740

N 5,627 5,627

F 408.27 401.21

Note: Robust standard errors clustered at week-year level. *** p<0.01, ** p<0.05,

* p<0.1. The unit of observation is a 6-hour window. Dependent Variable is the

logarithm of the total number of car accidents. Each coefficient corresponds to a

separate regression. All the specifications include 6-hour window fixed effect and day

fixed effect. Column (1) shows the point estimates using log(co+1), whereas Column

(2) shows the estimates of a censored distribution of CO. Weather controls are 6-hour

average humidity, temperature, rainfall, wind speed, wind direction and the interaction

of wind direction and wind speed. It also includes a fourth polynomial in rainfall and

wind speed.

Table C.3

Impact of Particulate Matter 2.5 on Total Number of Car Accidents

Dep. Var.:Ln(1+ Total Number of Car Accidents)

(1) (2) (3) (4)

PM2.5 0.007*** 0.000 0.013*** 0.005

(0.001) (0.003) (0.002) (0.003)

PM2.5
2 -0.000*** -0.000***

(0.000) (0.000)

R-squared 0.729 0.723 0.730 0.731

N 5,627 5,564 5,627 5,565

Note: Standard errors are obtained from 1000 bootstrap draws ***

p<0.01, ** p<0.05, * p<0.1. The unit of observation is a 6-hour win-

dow. Dependent Variable is the logarithm of the total number of car

accidents. Each coefficient corresponds to a separate regression. All the

specifications include 6-hour window fixed effect and day fixed effect. Odd

columns present an OLS approach, whereas even columns present IV esti-

mates. Weather controls are 6-hour average humidity, temperature, rain-

fall, wind speed, wind direction and the interaction of wind direction and

wind speed. It also includes a fourth polynomial in rainfall and wind

speed.
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Table C.4

Impact of Air Pollution on Total Number of Car Accidents

Dep. Var.:Ln(1+ Total Number of Car Accidents)

(1) (2) (3) (4)

Panel a: Principal Component Analysis

Principal Component 0.125*** 0.002 0.202*** 0.029

(0.010) (0.039) (0.017) (0.044)

PC2 -0.018*** -0.021***

(0.003) (0.003)

R-squared 0.734 0.723 0.736 0.738

N 5,627 5,564 5,627 5,565

Panel b: Air Quality Index

AQI 0.004*** 0.000 0.005*** 0.001

(0.000) (0.002) (0.001) (0.002)

AQI2 -0.000 -0.000

(0.000) (0.000)

R-squared 0.730 0.723 0.730 0.731

N 5,627 5,564 5,627 5,565

Note: Standard errors are obtained from 1000 bootstrap draws *** p<0.01,

** p<0.05, * p<0.1. The unit of observation is a 6-hour window. Dependent

Variable is the logarithm of the total number of car accidents. Each coefficient

corresponds to a separate regression. Panel (a) presents the estimates for PCA,

whereas Panel (b) presents the estimates for aggregated AQI. All the specifi-

cations include 6-hour window fixed effect and day fixed effect. Odd columns

present an OLS approach, whereas even columns present IV estimates. Weather

controls are 6-hour average humidity, temperature, rainfall, wind speed, wind

direction and the interaction of wind direction and wind speed. It also includes

a fourth polynomial in rainfall and wind speed.
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Table C.5

Impact of CO on Accidents

Panel a: Linear Model

Total 2,97 0,05 1,57 0,49

Minor 1,5 0,23 0,79 0,26

Major 1,13 0,16 0,74 0,37

Fatal 0 -0,02 0,02 -0,12

Panel b: Non-Linear Model

Total 5,64 0,26 3,57 0,62

Minor 2,99 0,34 1,94 0,34

Major 2,12 0,24 1,57 0,43

Fatal 0,01 -0,02 0,04 0

Note: This Table gives predicted

changes in total number of car ac-

cidents. Panel (a) used Equation 1,

while Panel (b) used Equation 3.

Table C.6

Placebo Tests

(1) (2) (3) (4) (5) (6) (7)

Santiago Calama Concepción Puchuncav́ı Rancagua Talcahuano Temuco

CO 0.287*** 0.907 0.292 0.405 -0.022 -0.130 -0.008

(0.110) (1.250) (0.382) (1.143) (0.234) (0.667) (0.213)

CO2 -0.227*** -0.371 -0.002 -0.795*** -0.033*** -0.000 0.005

(0.022) (0.277) (0.002) (0.257) (0.007) (0.002) (0.007)

R-squared 0.744 0.730 0.720 0.722 0.729 0.723 0.726

N 5,565 5,142 4,388 5,511 5,295 5,519 5,226

Note: Standard errors are obtained from 1000 bootstrap draws *** p<0.01, ** p<0.05, * p<0.1. The

unit of observation is a 6-hour window. Dependent Variable is the logarithm of the total number of car

accidents. Each coefficient corresponds to a separate regression that uses the analogous series of CO level

from 6 other Chilean cities. All the specifications include 6-hour window fixed effect and day fixed effect.

Odd columns present an OLS approach, whereas even columns present IV estimates. Weather controls

are 6-hour average humidity, temperature, rainfall, wind speed, wind direction and the interaction of wind

direction and wind speed. It also includes a fourth polynomial in rainfall and wind speed.
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